1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
| import traceback import os import socket import math
import torch import torch.nn as nn import torch.nn.functional as F import torch.distributed as dist import ray from ray.util.placement_group import placement_group, remove_placement_group from ray.util.scheduling_strategies import PlacementGroupSchedulingStrategy
def find_free_port(): """Find a free port for master communication""" import socket with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.bind(("", 0)) s.listen(1) port = s.getsockname()[1] return port
def set_random_seed(seed=42): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed)
set_random_seed(42) ray.init()
class DummyAttn(nn.Module): """ 定义一个简单的 model,完成 forward,backward,梯度同步等操作。 """ def __init__( self, num_heads: int = 16, head_dim: int = 64, hidden_size: int = 1024, ): super().__init__()
self.num_heads = num_heads self.head_dim = head_dim self.q_proj = nn.Linear(hidden_size, head_dim * num_heads, bias=False) self.k_proj = nn.Linear(hidden_size, head_dim * num_heads, bias=False) self.v_proj = nn.Linear(hidden_size, head_dim * num_heads, bias=False) self.out_proj = nn.Linear(head_dim * num_heads, hidden_size, bias=False)
self._init_weights() self.register_backward_hook(self._allreduce_grads)
def _init_weights(self): for m in self.modules(): if isinstance(m, nn.Linear): nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.zeros_(m.bias)
def register_backward_hook(self, hook): for p in self.parameters(): if p.requires_grad is True: p.register_hook(hook)
def _allreduce_grads(self, grad): """ 在当前 group (default group) 中执行梯度 all_reduce 同步操作。 """ dist.all_reduce(grad, op=dist.ReduceOp.SUM) return grad
def forward(self, x): """ Args: x: (batch_size, seq_len, hidden_size) """ bs, seq_len, hidden_size = x.size() q = self.q_proj(x) k = self.k_proj(x) v = self.v_proj(x)
q = q.view(bs, seq_len, self.num_heads, self.head_dim).transpose(1, 2) k = k.view(bs, seq_len, self.num_heads, self.head_dim).permute(0, 2, 3, 1) v = v.view(bs, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
attn = q @ k / math.sqrt(self.head_dim) attn_scores = F.softmax(attn, dim=-1) y = attn_scores @ v y = y.transpose(1, 2).contiguous().view(bs, seq_len, -1) y = self.out_proj(y) return y
class WorkerBase: """ 用作 Actors 的类 可以直接使用装饰器定义 @ray.remote 或者 ray.remote(WorkerBase) """
def __init__(self, temp_init: bool = False): self._node_id = ray.get_runtime_context().get_node_id() self._actor_id = ray.get_runtime_context().get_actor_id() self._task_id = ray.get_runtime_context().get_task_id() self._job_id = ray.get_runtime_context().get_job_id() self._hostname = socket.gethostname() self._ip_address = socket.gethostbyname(socket.gethostname()) if temp_init: return self._set_seed(42)
if not dist.is_initialized(): dist.init_process_group( backend="cpu:gloo,cuda:nccl", world_size=int(os.getenv("WORLD_SIZE", "1")), rank=int(os.getenv("RANK", "0")), )
self._rank = dist.get_rank() self._world_size = dist.get_world_size()
self.model = DummyAttn() self.model.to("cuda") print(f"=> Rank {self._rank} init model")
def get_actor_info(self): return { "node_id": self._node_id, "actor_id": self._actor_id, "task_id": self._task_id, "job_id": self._job_id, "hostname": self._hostname, "ip_address": self._ip_address, }
def shutdown(self): dist.destroy_process_group()
def _set_seed(self, seed: int = 42): set_random_seed(seed)
def train_step(self, data): self.model.train()
x = data.to("cuda") y = self.model(x) loss = y.sum() loss.backward() return loss.cpu()
def sample_grads(self): for name, p in self.model.named_parameters(): if p.requires_grad is True: return name, p.grad.cpu()
def main(): num_devices = get_num_devices() pg = placement_group([ {"CPU": 1, "GPU": 1} for _ in range(num_devices) ], strategy="STRICT_PACK", name="ray_actor_communication")
ray.get(pg.ready()) print(f"=> Placement group {pg.id} is ready, num_devices: {num_devices}") worker_cls = WorkerBase Worker = ray.remote(worker_cls)
print("========= Get network info ==========") temp_worker = Worker.options( scheduling_strategy=PlacementGroupSchedulingStrategy( placement_group=pg, placement_group_bundle_index=0, ), runtime_env={"env_vars": {"WORLD_SIZE": "1", "RANK": "0", "MASTER_ADDR": "127.0.0.1", "MASTER_PORT": str(find_free_port())}}, num_gpus=1, num_cpus=1, ).remote(temp_init=True)
network_info = ray.get(temp_worker.get_actor_info.remote()) master_addr = network_info["ip_address"] master_port = str(find_free_port())
print(f"Using master: {master_addr}:{master_port}") ray.kill(temp_worker) print("========= Terminate temporary worker ==========\n")
workers = [] for i in range(num_devices): env_vars = { "WORLD_SIZE": str(num_devices), "RANK": str(i), "MASTER_ADDR": master_addr, "MASTER_PORT": master_port, }
workers.append( Worker.options( scheduling_strategy=PlacementGroupSchedulingStrategy( placement_group=pg, placement_group_bundle_index=i, ), runtime_env={ "env_vars": env_vars, }, num_gpus=1, num_cpus=1, ).remote() )
datas = torch.randn(4, 128, 1024) for i, worker in enumerate(workers): data = datas.chunk(num_devices)[i] worker.train_step.remote(data)
grads = ray.get([worker.sample_grads.remote() for worker in workers]) for i, (name, grad) in enumerate(grads): print(f"=> Rank {i} grad: {name}\n{grad}")
if __name__ == "__main__": try: main() except KeyboardInterrupt: pass except Exception as e: print(e) traceback.print_exc() finally: ray.shutdown()
|